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We study a one-dimensional model for fracture, identifying fractured areas with 
intervals on which a stress field ~ exceeds a threshold value A. When ~ is a dif- 
fusion process, the cumulative number N(l) of fractured areas whose length is 
greater than l obeys a power law Cl p as l~,0 with probability one. The 
exponent p and the constant C are determined. The exponent p agrees with the 
Hausdorff dimension of the end points of fractured areas, i.e., ~-~(A). Even if 
is self-similar with parameter H > 0, i.e., ~(cx) -  A is equivalent to cn{~(x ) -  A } 
for any e > 0, the exponent p does not depend solely on H; p = fill, where 
2 E (0, 1/H) is another parameter characterizing ~. Non-diffusion processes are 
given where N(I) does not follow a power law. 

KEY WORDS:  Fracture; size distribution; power law; diffusion process; 
Hausdorff dimension; self-similar. 

1. I N T R O D U C T I O N  A N D  S U M M A R Y  

When inhomogeneous materials such as rocks are compressed, many small 
fractures occur, emitting elastic waves: so-called acoustic emission. The 
cumulative number N(E) of fractures whose emitted energy is greater than 
E obeys a power law distribution 

N(E) .,~ CoE p (1.1) 

The relation (1.1) remains valid for much larger fractures, i.e., earth- 
quakes. It is called the Gutenberg-Richter or the Ishimoto-Iida relation 
and plays an important role in seismology. ~) If we assume that the released 
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energy of each fracture is proportional to its size S, a power-law dis- 
tribution (1.1) with different Co also holds for S. 

Stimulated by the fractal theory, (2) it has been pointed out that the 
power law for S readily follows from the assumption of self-similarity. ~ 
The assumption is naturally inferred from the fractal surfaces of fractured 
materials (4) or the resemblance of fracture to a phase transition. 151 
However, it would be hasty to suppose that the self-similarity alone is 
responsible for the power law. We present here a model that is not 
necessarily self-similar but has a power-law size distribution. Even when 
the model becomes self-similar, the exponent p does not depend solely on 
the self-similarity parameter H [see (I.10) for definition]. 

The model we study here was originally proposed by Oda et alJ 6) Let 
ao(x ) be a random stress field of the material. A fractured area will be 
defined as a connected region fulfilling a fracture criterion 

~(x) = c(Go(x) ) >13 (1.2) 

where G is a certain scalar function and 3 is a threshold value for fracture. 
(See Fig. 1.) If we adopt, for example, yon Mieses' criterion, G(au) is the 
so-called equivalent stress, given explicitly as (7) 

G(~,j) = 2 ~ / ~ [ ( ~ .  - ~ ) ~  + ( ~  - a ~ )  ~ 

+ (0"33 -- 0.11 )2 .4_ 6(a~ 2 + a :  3 + 0.21 ) ]  1/2 (1.3) 

The size distribution for fractured areas can be obtained in principle 
by solving a stochastic equation governing 0. and invoking (1.2). We avoid 
this tedious process; we impose some conditions on r itself and apply (1.2). 

In the following we restrict ourselves to a one-dimensional material 
with length L. By N(l, L) we denote the cumulative number of fractured 
areas whose length is greater than I. 

As we see in Section 4, N(I, L) does not necessarily follow a power law 
as in (1.1). One well-known example that exhibits a power law is Brownian 
motion B; the relation 

N(I,L).,~Cll 1/2 as IJ, 0 (1.4) 

holds with probability one, where C1 is a constant depending on the sam- 
ple parameter and L. (See Ref. 8, Section 2.2, and this paper, Section 3.) 
The Brownian motion, however, has two special properties--the Gaussian 
property and self-similarity. So we are naturally led to the following 
questions: (1)Does N(l, L) follow a power law even if the process ~ lacks 
self-similarity or the Gaussian property? (2) If it does, how is the exponent 
p given? (3) How does p depend on the similarity parameter H if ~ is self- 
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Fig. 1. 
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Schematic illustration of fracture. Bold segments are fractured areas. 

similar? (4) How is p related to the Hausdorff dimension of the surface of 
fractured materials (a problem heuristically discussed by Aki(9))? 

Seetion~2 is devoted to solving these questions rigorously when ~ is a 
diffusion process. The result is as follows. The process ~ is uniquely charac- 
terized by two functions s and m in the sense that the Kolmogorov 
backward operator A is given by 

d d 
A - dm ds (1.5) 

Here s and m are usually called the scale and the speed measure, respec- 
tively. We assume, without losing generality in practical situations, that 
they have the following asymptotic forms around the threshold A in (1.2): 

s ( r ) ~ C z ( r - A )  ;~, m ( r ) ~ C 3 ( r - A )  u (1.6) 

as r,L A, where C2, C3, 2, and # are positive constants. Then N(l, L) follows 
a power law, 

N ( I , L ) ~ C I  p as lJ, 0, p = 2 / ( 2 + # )  (1.7) 

with probability one. The exponent p agrees with the Hausdorff dimension 
of end points of fractured areas 

= = 3 }  

The constant C is given by 

( 1 . 8 )  

C =  CaSh(L) (1.9) 
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where C4 is defined by (2.16), and the random variable ~b(L) is what 
probabilists call the local time given by (2.13) with r = 0. 

Two examples are discussed in Section 3. One is the Ornstein 
Uhlenbeck process, for which 2 =/~ = 1, hence p = 1/2. The other is a self- 
similar diffusion process fulfilling a self-similarity condition with parameter 
H > 0  

~ ( c x ) -  J ~= d*{r - J } (1.10) 

for any c > 0. Here the symbol __a denotes equality of the finite-dimensional 
distributions of the two processes, or, in physics terminology, agreement of 
all multipoint correlation functions of the two processes. Such a self-similar 
process is constructed when 

)~C5 I r -z t l  x, r~>A, 
s ( r )=[ -C '  51r-zll x, r < A ,  

m(r)= [< C6 ][-- A]-)" + I/H, 
(-C6 Ir-AI ~+*/'~, 

r~>A 

r < A  

(1.11) 

where C5, C;, C6, and C; are positive constants and 2 ~ (0, 1/H). In this 
case we have p = 2H, showing that the exponent p depends not only on H, 
but also on 2. 

In Section 4, we discuss Gaussian processes having smooth sample 
functions. A Gaussian process ~ with mean A and covariance 

Er~(x) ~(y)] = xy  + 3 2 (1.12) 

has only a finite number of fractures, i.e., N ( 0 + ,  L ) <  oo for each L < oo 
with probability one. This fact invalidates the power law (1.7). The same is 
true for a stationary Gaussian process ~/with mean zero and covariance 

E[ff(x)~l(y)] = e x p ( - C 7  [y]2), C 7 > 0  (1.13) 

whose N(I, L) was studied by simulationJ 6) The process q has another 
interesting distribution; the cumulative number per unit length N(l, L)/L 
converges as L ~ m to a certain distribution N'(l) with probability one. If A 
is sufficiently large, N(l) scaled by N(0 + ), the average number of fractures 
per unit length behaves as 

N(I)/N(O+ ) ~ exp(-12C7A2/4) (1.14) 

and does not obey a power law. 
A sketch is given in Section 5 of the results by Kesten, ~17) who studied 

the asymptotic behavior of N(l, L) as l J, 0 for stable symmetric processes. A 
stable symmetric process ~ with index H (1/2 ~<H< oo) is a stochastic 
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process with stationary independent increments whose characteristic 
function is given by 

E(exp{iO[~(x)-~(y)]})=exp(-Ix-  y[ IO[ ~/H) (1.15) 

It has, in contrast with the processes in Sections 2 ~ ,  discontinuous sample 
functions if H > 1/2 (the process with H = 1/2 is essentially the Brownian 
motion). Roughly speaking, N(l, L) follows a power law 

N(l, L) ,-~ l P, p = m a x ( H -  1, 0) (1.16) 

but its precise implication given by Kesten is different from (1.7). 

2. POWER LAWS FOR DIFFUSION PROCESSES 

Let .~(x), x ~ [0, ~ ) ,  be an R1-valued homogeneous diffusion process. 
Redefine the origin of ~ so that the fracture criterion is given by (1.2) 
with A =0. Let ~ +  be a fractured area, i~ maximal open interval on 
which ~(x)> 0. By I~+[  we denote the length (Lebesgue measure) of ~ +  
Our concern is the asymptotic behavior as l$ 0 of the cumulative number 
N(l, L) of ~e+, contained in the interval [-0, L), whose length is greater 
than l: 

N(l, L ) =  # {~(+: ~e+ c [0, L), I~+1 ~l} (2.1) 

Let us specify conditions imposed on r from a physical point of view. 
Naturally ~ is conservative: 

P r ( ~ ( x )  ~ R 1, V x  e [0,  o(3 )) = 1, Vr ~ R I (2.2) 

where Pr denotes the probability for paths starting at r, i.e., ~(0)=r.  
A point r E R ~ is called regular if 

Pr("Cr + = ~c r_  = 0 ) > 0  

where ru is the first hitting time for u 

(2.3) 

v~ = inf{x > O, ~(x) = u} (2.4) 

and rr+ (3 ,_)=  limu+r % (resp. limut r %). All values of the stress field ~ will 
be regular points. So we assume that the range of r is contained in an inter- 
val I =  (r~, r2) (r~ < 0 < r2) consisting only of regular points. Behavior near 
the boundaries Yi ( i =  1, 2) is assumed as follows: r i is inaccessible for 
(natural or entrance boundary), or reflected as soon as ~ attains to r e 
(regular boundary with instantaneous reflection). We further assume that 
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is persistent (recurrent); for any a, b e / ,  if ~(x) - a, then ~(y) = b for some 
y e (x, oo) with probability one. This may be intuitively understood that 
the stress ~ takes all the values in I many times so long as the length L is 
sufficiently large. 

The nonsingular diffusion process ~ on the interval I is uniquely 
characterized by two quantities, a continuous, strictly increasing function s 
called the canonical scale and a measure dm called the speed measure. The 
process is determined by the generator 

A f ( r ) _ l i m E r [ f ( ~ ( x ) ) ] -  f(r) d d + - f (r )  (2.5) 
x+o x dm ds 

together with a Neumann-type boundary condition at rl (r2) 

(d+/ds) f (r l)  = 0 (2.6) 

[resp. (d-/ds) f(r2) = 0] (2.7) 

if r~ (resp. r2) is a regular boundary with instantaneous reflection. Here 
E , [ .  ] denotes the expectation with respect to Pr, and d+/ds and d /ds are 
one-sided scale derivatives: 

(d+/ds) f(r) L lim [f(r  + h) - f(r) ]/[s(r + h) - s(r)] 
h$O 

(2.8) 
(d /ds) f(r)  = lim [f(r  - h) - f ( r ) ] / [ s ( r  - h) - s(r)] 

h$O 

The properties assumed above are given in terms of m and s. Put 

A1 = I[ dm(u) ds(v) 
aJ r I < V < u < O  

A 2  = i f  f-2 . . . .  > 0 dm(u) ds(v) 
(2.9) 

B1 = 11 ds(u) dm(v) 
J~r I < : V < U < 0  

B2 = [[  ds(u) dm(v) 
�9 ,o r 2 : > v > u > O  

then the boundary ri (i= 1, 2) is regular if Ai< oo, Bi< 0% exit if Ai< oo, 
Bi= 0% entrance if Ai= o% Bi< oo, and natural if A i =  0% B i =  oo; ~ is 
conservative and persistent iff 

(1) s ( r a ) = - o o  or (2) s ( r l ) > - o o ,  m ( r l ) > - o o ,  and(2.6) 

(2.10) 
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and 

(3) s(r2) = oo or (4) s(r~) < oo, rn(r2) < 0% and (2.7) 

(2.11) 

In (2.10), (2.11), m is the right-continuous, nondecreasing function defined 
by the relation 

[~E0,r~ dm (r >~ O) 
re(F) ":~{--~Er,O) dm (r<O) (2.12) 

Without loss of generality we have put m ( 0 - ) = 0  in (2.12) and will 
assume s(0)= 0 in the following. We will identify m with drn when there is 
no chance of confusion. The quantity 

~b(L, r )=measure{y:  ~(y)edr, 0<~ y<~L}/dm(r) (2.13) 

exists with probability one, and is called the local time. We write ~b(L) for 
~b(L, 0). (See It6 and McKean (8) and It6 (1~ for basic notions and results of 
diffusion processes.) 

Now we give our main theorem: 

T h e o r e m .  Suppose the scale s and the speed measure dm have the 
asymptotic forms as r + 0 

s(r) ~ C2 r)" and m(r) ~ C3 r• (2.14) 

where C2, C3, 2, and # are positive constants. Then 

Po(lim N(l, L)/C4 l-p = O(L), L > O) = 1 
110 

(2.15) 

where the constant C4 is given by 

C4=C~ 1 C f [ ( 1 - p ) p ]  pr(l+p)-' 

and 

(2.16) 

p = ,~/(,~ + ~,) (2.17) 

In (2.16), F is the gamma function. 

Remark 1. We need to assume the asymptotic form (2.14) only for 
r > 0. This comes from the fact that the behavior of ~ above the level zt 
( = 0 )  is determined just by s and m for r > 0 .  
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The exponent p agrees with the Hausdorff dimension of 

(2.18) 

where 

h(~) = lim el(r)/eo(r) (2.25) 
r~r2 

Remark 2. 

~ o =  ~-1(0)= {0~<x~<L: ~(x) =0}  

which is given in Ref. 8, Section 6.7. 

Proof of the Theorem. Let us start with the following result. 

L e m m a  1. (Ref. 8, Sections 6.2 and 6.3.) For a nonsingular and 
persistent diffusion process 4, 

Po(lim N(I, L)/n + [-l, oo ) = ~(L), L > 0) = 1 
tJ.O 

Here n+[l ,  oo) is given by the monotonically increasing limit of 
Pr(r >>-l)/s(r) as r$0, i.e., 

P,(zo~l) /s (r)Tn+[l ,  ~ )  as r~0 (2.19) 

and is continuous in l. 
From this lemma we only have to study the asymptotic behavior of 

n+ [/, ~ )  as I$ 0. Let us consider the differential equation on I: 

d d + 
- -  - -  g(r) = ~g(r), ~ > 0 (2.20) 
dm ds 

It is known ~1~ that the special solutions eo, el determined by 

for/ eo(r) = 1 + ~ eo(u) din(u) ds(v) (2.21) 
+ 

el(r) = s(r) + ~ el(u) din(u) ds(v) (2.22) 
O+ 

span the solutions of (2.20). Its positive and decreasing solution g2 with 
g2(O) = 1, and with the additional condition 

(d-/ds)  g2(r2) = 0 (2.23) 

if r z is a regular boundary with instantaneous reflection, is uniquely given 
by 

g2(r) =eo ( r ) -h (~ )  1el(r) (2.24) 
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On the other hand, g2 also is expressed in terms of the hitting time z0 as 
[Ref. 8, Section 4.6, p. 129, Eq. (3b); the points 0, 1/2, l there correspond 
to rl, 0, r 2 in our case] 

g2(r)/g2(O) = Er[exp(--~Zo)], 

Using this expression, we have 

1 d+g2 
- -  (0) = lim s(r) l[g2(r) - g2(0)] g2(0) -~ 

g2(0)  Ks r*O 

= tim s ( r ) < o  l i f o  

= lim s(r'-L I 

r > 0 (2.26) 

e-~lpr('~ 0 ~ dl) - 1] 

Pr(zo > l) d(e-  ~l _ 1 )J 

By (2.19) and continuity of n+ [l, oo), we obtain the relation 

1 ;o o d+g2 (0) = - ~  n+[l, oo)e-~Ldl (2.27) 
g;(0) ,Is 

Substituting (2.24) into (2.27), we get 

1/[h(~)c~] = n+[l, oo)e-~tdl (2.28) 

Let us make a coordinate transformation. Put 

do(r)=eo(s-l(r)), dl(r) = el(s l(r)) 
(2.29) 

rh(r) = m(s-  l(r) ) 

Then o n  ( s ( r l )  , s(r2) ) we have 

go(r) = 1 + ct go(U) dth(u) dv (2.30) 

fo; + 61(r)=r+c~ dl(u)drh(u)dv (2.31) 
+ 

h ( e ) =  lim dl(r)/do(r) (2.32) 
�9 t s(r2] 

The asymptotic form of h(~) appearing in (2.32) as ~ ~ is 
investigated by Kasahara/11) The following lemma is a corollary to his 
result. 
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L e m m a  2. 
are equivalent: 

1. 

2. 

where 

Ito, Kotani, and Yokota 

For  C8 > 0 and 0 < q < 1, the following two conditions 

h(~) ~ CsDqo~-q as ~ ~ ov 

rh(r)~C81/qr 1/q-1 as r--* +0 

Dq=[q(1-q)]  q F(l + q ) F ( 1 - q ) - '  

Under the assumption of the theorem 

rh(r)=m(s-~(r))~C3C2~/Xr ~/~ as r J, 0 

Applying Lemma 2 with 1/q - 1 =/~/2, C 8 = (C 3 CJ/~) q, i.e., q = p, C8 = 
C~- PC 3 P, we have 

h(.) ~ C~ PCzeDp~ -p as . - - ,  oo (2.33) 

where p is give~a by (2.17). Here 1 / [~h( . ) ]  is the Laplace transform of 
n+[l, ~ )  as given in (2.28), and has the asymptotic form 

1/[ah(~)]~.~Cp-lCPDplO~p 1 as a ~ o v  

from (2.33). By virtue of the Tauberian theorem for the Laplace 
transformation, ~12~ we have the asymptotic form for n+ 

n+[/ ,  oo)~C~-ICPDp~F(1-p)-~ 1 -p as l$0  (2.34) 

Relation (2.34) together with Lemma 1 proves the theorem. 

3. ORNSTEIN-UHLENBECK PROCESS AND A SELF-SIMILAR 
DIFFUSION PROCESS 

As in Section 2, A = 0 is assumed. The assumptions of the theorem are 
checked by evaluating the Ai, Bi in (2.9) and confirming (2.10), (2.11). 

The Ornstein-Uhlenbeck process is given by a stochastic differential 
equation 

d~(x)=b(~(x))dx+a(r 3 ( 0 ) = 0  (3.1) 

with 

b(~ l )=-C9u  (C9 > 0), a ( u ) =  1 (3.2) 
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Here B is the one-dimensional Brownian motion. In this case the boun- 
daries r~ = -0% r2= oo are natural and { is persistent. Generally, for 
given by (3.l), s and m take the form (1~ 

where 

;o s(r)-- du e x p [ - H ( u ) ]  (3.3) 

m(r) = fo du 2a(u) 2 exp[H(u)]  (3.4) 

H(u) = 2b(v) a(v)-Z dv (3.5) 
0 

We may take any point uo in 1= (rl, r2) as the lower bound in the integral 
(3.5). Change of u0 only induces the transformation s(r) --, C1os(r), re(r) 
C~olm(r) (Clo > 0). 

In the case in which (3.2) holds, s and m have the asymptotic property 
(2.14) with 2 = / ~ =  1; hence (2.15) holds with p =  1/2. We note that 2, /~, 
and accordingly the exponent p of (2.17) do not change as long as the 
functions b and a satisfy 

b ( u ) ~ C l l ,  a(u)--*C12#O (3.6) 

a s  u --* 0 .  

Let us next study the self-similar case (1,11 ). The boundaries r~ ---- -0% 
rz--- ~ are both natural and ~ is persistent. The condition (1.10) with d = 0 
can be checked by ascertaining that the generators of ~(cx) and cnr 
agree with each other; for any function f belonging to the domain of the 
generator A [Eq. (2.5)] of 3, we have 

lira {Er[f(~(cx))]  - f ( r )  }/x = c lim {Er[f(~(cx))]  - f ( r ) } / cx  
xJ, O x,~O 

and 
= cAr(r) (3.7) 

lira {Er[f(cH~(x))] - - f ( r ) } / x  = lim {E,,[h(~(x))] - h(r')}/x 
xJ, O x),O 

=Ah(r ' )  (3.8) 

Here h is defined as h(r)=f(cHr) ,  and r ' = c  /~r. Since by the scaling 
property of s and m 

s(r') = e-'~Hs(r), m(r') = c ~H- Zrn(r) 

Eq. (3.8) becomes cAr(r), agreeing with (3.7). 
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Now we apply the theorem with 2 = 2, # = - 2  + 1/H, and obtain 

p=2H (3.9) 

where H >  0 and 0 < 2 < 1/H. The above relation shows that p depends 
both on 2 and H. 

The corresponding stochastic differential equation to the self-similar 
process is obtained by applying (3.3)-(3.5) on ( 0 , ~ )  and ( - ~ , 0 )  
separately. We find 

( ~  ~1 1/H 
. z  , / "~ 13 " ' r > 0 ,  a(r)=~C14rl-1/(2H), r > 0  (3.10) 
~ Irl 1-1/~t, r < 0 ,  [_C,14 irll 1 / ( 2 H ) ,  r < 0  

Here 

C13 = (1 -2 ) / [C5C62(-2  + l /H)]  

C14 = {2/ [ -C 5 C62  ( - 2 -~- l / H ) ]  }1/2 
(3.11) 

and similar expressions obtained by replacing C5, C6 by C~, C~ are valid 
for C'13, C'14. The relation (3.10) shows that our diffusion process has the 
same generator on (0, oe) as the self-similar diffusion process constructed 
by Lamperti ~13) on [0, oo) or (0, oo). 

A few remarks will be given on the stochastic differential equation 
(3.1) with coefficients (3.10). At r = 0, the functions a, b lack the Lipschitz 
continuity, and both become even singular if H < 1/2. It might be feared 
that this irregularity gives rise to a difficulty in constituting the process on 
the whole region ( -  0% oo). One way to overcome this difficulty is, as we 
have done here, to define the process in terms of the scale s and the speed 
measure dm. Applying (3.3)-(3.5) to (3.10) on ( - 0 % 0 )  and (0, oo) 
separately, we obtain s and m, naturally extensible to continuous functions 
on ( -  0% oo ). The extended s and m, which essentially agree with (1.11), 
allow us to construct the process as follows. Take a Brownian motion 
{B(x), x >/0} with B(0)= 0. Define the standard Brownian local time ~bB at 
r as [i.e., drn(r)= 2dr in (2.13)] 

and 

~bB(x, r) = measure(y: B(y) e dr, 0 <~ y <~ x)/2dr 

cb(x)= I 2  fbB(x, r) dm(s l(r)) 

Then the process ~(x)= s(B(~b-l(x))) starts at 0 and has d/dm d+/ds as its 
generator. 
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The above  const ruct ion is generally valid for any pair  of  a scale s and 
a speed measure  dm; on ( - 0 %  Go), s is a cont inuous,  strictly increasing 
function with s ( - ~ ) = - 0 %  s ( ~ ) =  ~ ,  and dm is a measure  that  is 
positive on each nonempty  open set and is finite on each compac t  set. See 
Ref. 8 for further details. 

Finally, we remark  that,  unlike the Ornste in  Uhlenbeck  process, the 
self-similar process does not  have a s ta t ionary  version; the condi t ion 
(Ref. 8, Section 4.11, p rob lem 11) 

re(r1) > --cZ3 and m(r2) < Go 

for the existence of an invar iant  probabi l i ty  measure  (s ta t ionary probabi l i ty  
function) is violated. 

4. E X A M P L E S  N O T  O B E Y I N G  P O W E R  L A W S  

In this section N(l, L) is the same as in Section 2, but  we do not  set 
d = 0. Take  a Gauss ian  process ~ s tar t ing at A with mean  A and covar iance 

E[C(x) r  = xy  + ~ (4.1) 

We see that  the power  law in Section 2 does not  hold for r since the total  
n u m b e r  of fractures is finite; 

N ( 0 + ,  L)  < ~ with probabi l i ty  one (4.2) 

for L < ~ .  This comes f rom the fact that  ~(x) is, with probabi l i ty  one, such 
an analytic function that  its Tay lo r  expansion at x e [0, o0 ) has infinite 
radius of convergence.  (14) 

Suppose  the con t ra ry  to (4.2); ~(xi) = A for infinitely m a n y  xi in (0, L)  
with posit ive probabil i ty.  We m a y  assume 0 < x 1 < x2 < . . .  < L. The case 
of 0 < .-.  < x2 < xl  < L can be p roved  similarly. Let  xo~ be the limit point  
of  {xl ,  x2,... }. Fo r  k = 0, 1 ..... we can find a sequence xk,1 < xk.2 < " "  ~ x ~  
such that  ~(k)(Xk.i)= A6ko. This is shown by induction.  The  case of  k = 0 is 
clear by taking x0, i=x~.  Assume {xn, g} has a l ready been found. Since 
~(n)(x,,i) = ~(")(xn, i + l ) =  0, by the mean  value theorem there exists x , +  1,ie 
(xn,~,x,,i+l) such tha t  ~("+l)(X~+l ,g)=0.  Here  X,+l, i converges to x ~ ,  
since x~ + 1,i e (x,, ~, x,, ~ + ~ ) and  x ,  ~, x,,  i + 1 --+ x ~ and it is strictly increasing 
in i, since X~+l,~_ 1 <x,,g<x,+~,i. Hence  the validity is shown in the case 
of  k = n +  1. The  existence of the sequence {xk, i} implies that  r  
and that  all the derivatives ~(k) (k = 1, 2,...) vanish at xoo, since ~ (~ ) (x~)=  

822/51/3-4-17 
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limi r i)=A6ko. By the analytic property of 4, it is concluded that 
- A  with positive probability. But this contradicts (4.1), since 

P(r on [0, L] )  

<<.P(~(xl)=A) 

= fl~} (2~2)-1/2 e x p [ -  ( y -  A)2/(2~2)] dy = 0 

(~2=x~+A2) 

Next we discuss the stationary model proposed by Oda et al. (6~ Let t/ 
be a stationary Gaussian process with mean 0 and covariance 

E[q(x)q(y)] = exp( -C7  I x - y l  z) (C7 >0)  (4.3) 

The same analytic property of q as ~ makes the relation (4.2) hold, so that 
the power law in Section 2 is not valid either. Since t/ is ergodic, it has 
another interesting distribution N(l), the limit of the cumulative number of 
fractures per 5nit  length limL~oo N(l, L)/L. It seems difficult to express 
.N(l) explicitly, but for sufficiently large A, it does not follow a power law: 

N(2/A - I C  7 l/Z)/N(0 + ) ~ exp( - l 2) (4.4) 

as A --, oo (Ref. 15, Sections 11.5, 12.5). 
The results (4.2), (4.4) remain valid under weaker conditions. See 

Ref. 15, Section 13.2 for further details. 

5. PROCESSES W I T H  D I S C O N T I N U O U S  S A M P L E  F U N C T I O N S  

The processes ~ and t/ in Sections 2-4 have continuous sample 
functions with probability one. Physically this corresponds to the situation 
that the processes represent the stress fields. Tsuboi, C16) on the other hand, 
proposed a fracture criterion of the form (1.2) in terms of a possibly dis- 
continuous strain field ~. Typical processes having discontinuous sample 
functions were investigated by Kesten. ~17) Here we give a sketch of his 
result. 

As in Section 2 we put A = 0. Let r be the symmetric, stable process 
with index 1/H (H>>. 1/2), i.e., a stochastic process with stationary indepen- 
dent increments whose distribution is determined by (1.15). Essentially r is 
the Brownian motion if H =  1/2. The process ~ with H >  1/2 can be 
naturally regarded as a discontinuous counterpart of the Brownian motion; 
it is a process uniquely characterized by three properties, stationary 
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independent increments, self-similarity (1.10) with A = 0, and the invariance 
under x ~ - x ,  i.e., O9) 

~(-x)  g ~(x) 

He calculated N(l, L), the number of positivity intervals whose length 
is at least l. He found, roughly speaking, a power law 

N(I,L)~I P, p = m a x ( 1  - -H,  O) (5.1) 

As in Section 2, the exponent p agrees with the Hausdorff dimension of 
~-1(0).(2~ The precise implication of (5.1) is, however, different from the 
theorem in Section 2: 

limP(N(l, L)/f.(l ,  L)<<.x)=~ FH(x)' 1/2 ~<H< 1 
t,Lo { G(x), H =  1 (5.2) 

l.i.p. N(l, L)/fI4(l, L) = 1, H >  1 
lio 

Here 1.i.p. means limit in probability, and the scaling function fH(l, L) is 
given by 

l HV(1-H)[rcsin(r~H)] I(I/L)H 1, 
f.(l, L ) =  (2g 2) I [log(L/l)]2, 

(2~)-  i H tan(Tr/2H) log(L/l), 

1/2~<H< I 

H = I  

H > I  

(5.3) 

The function FH(x ) is the so-called Mittag-Leffler distribution 

F . ( x )  = 
1 f o ~ ( - - 1 ) k  1 

re(1 - H)  k=0 k! sin[re(1 - H)k] 

x F(1 + k ( 1 - H ) )  tk-~dt 

and 

G(x)=J'o: ~ ( - 1 ) ~ l r ( k + l / 2 ) e x p [ - ~ 2 ( 2 k + l ) 2 t / 8 ] d t  
k=O 

A counterpart of the theorem in Section 2 seems to be unknown in the 
present case, although it has been established for the size distribution of 
zero free intervals. (18) 
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